

Deriving Interpretable Thresholds For Variable Importance In Random Forests By Permutation

Blanco M¹, Müller T¹, Schlieker L¹, Ott A², Hornung R^{3, 4} and Buchner H¹

MOTIVATION

¹Staburo GmbH, Munich, Germany ²Roche Diagnostics GmbH, Penzberg , Germany ³Institute for Medical Information Processing, Biometry and Epidemiology. University of Munich ⁴ Munich Center for Machine Learning (MCML)

Different objectives!

Variable Importance (VIMP) in Random Forest (RF) is relevant for variable selection, interpretability, domain knowledge and decision making. ${\bullet}$

However, there is no theoretical null-distribution or thresholds for significance testing.

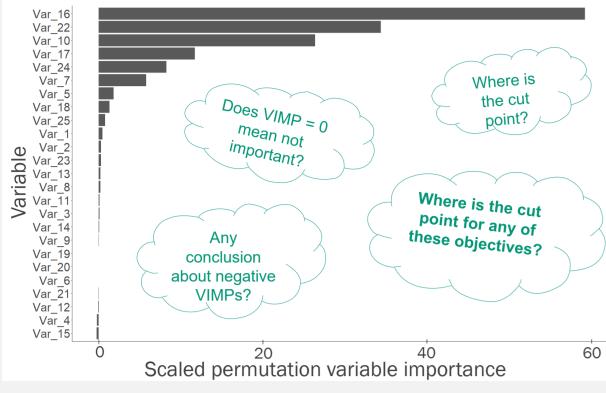


Figure 1: VIMP output of a RF.

Boruta (Kursa et al. (2010)) is a current method that:

- Is well performing.
- Permutes original variables independently (shadows).
- Considers a variable as informative if its VIMP is consistently higher than the maximum of the shadows.

GOALS

- **Interpretable Testing** \rightarrow clear null-hypothesis.
- **Flexible Thresholds** \rightarrow support for multiple testing scenarios.
- **Bias-Adjusted Comparisons** \rightarrow each variable is compared to its own shadow, addressing variable-specific biases (Strobl et al. (2007) & Nicodemus et al. (2010)).
- **Visual Insights** \rightarrow easily interpretable outputs.

PROPOSED APPROACH

H_0 : The VIMP of X \leq the VIMP of its own shadow.												
			Original		Shadow							
	У	x ₁	x ₂	x 3	x ₁ ^(s)	x ₂ ^(s)	x ₃ ^(s)					
	0	1	4	2	3	2	6					
	1	2	3	4	1	4	2					
	1	3	2	6	4	1	8					

DECISION CRITERION: $p_j = 1 - \hat{F}_{VI_i^{(S)}}\left(median(VI_j)\right) \le \alpha \rightarrow x_j$ is informative

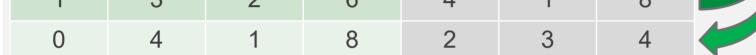
POOLING:

Non-parametric estimates of small p-values.

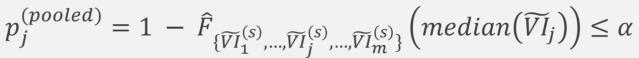
PRE-SELECTION OF VARIABLES:

Increases sensitivity and reduces runtime.

Iterations: Alpha: 0.		Iterations: 120 Alpha: 0.1			Iterations: 1500 Alpha: (adjusted) 0.05		
¹⁵⁰ Remove	Кеер	150 -	1 st cut		150 -	1 st cut 2 nd cut	
100-		100 -			100 -		



- 1. Copy the set of predictors and randomly permute its rows.
- 2. Paste the resulting dataset to the original one.
- 3. Run RF and calculate VIMP (Scaled Mean Decrease in Accuracy) on the new merged dataset.
- 4. Repeat the process to obtain *n* VIMP scores for each variable.



Where

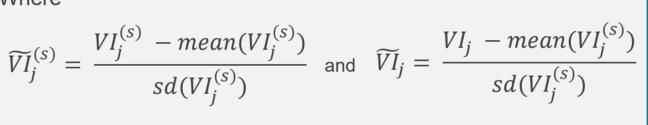


Figure 2: P-values density and thresholds through the preselection process.

SIMULATION

DESIGN:

It was used by Degenhardt et al. (2019).

$$y = 0.25(4x_1) + \frac{4}{1 + exp(-20(x_2 - 0.5))} + 3x_3 + \varepsilon$$

Where $\varepsilon \sim N(0, 0.2)$, x_1, \dots, x_6 *i. i. d* ~ U(0,1) and used to generate the correlated predictor variables according to:

$$v_i^{(j)} = x_i + 0.001 + \left(\frac{0.5(j-1)}{p-1}\right) \cdot N(0, 0.3)$$

 $v_i^{(j)}$ is the *j*-th variable in group *i*, for j = 1, ..., p and i = 1, ..., 6.

- Variables in the same group are noisy measurements of latent effect (x_i) .
- Informative variables: 3 groups of p = 10 variables with correlation within group.
- Uninformative variables: 30 correlated + 4940 uncorrelated.
- Total of 5000 variables.
- 50 replicates.

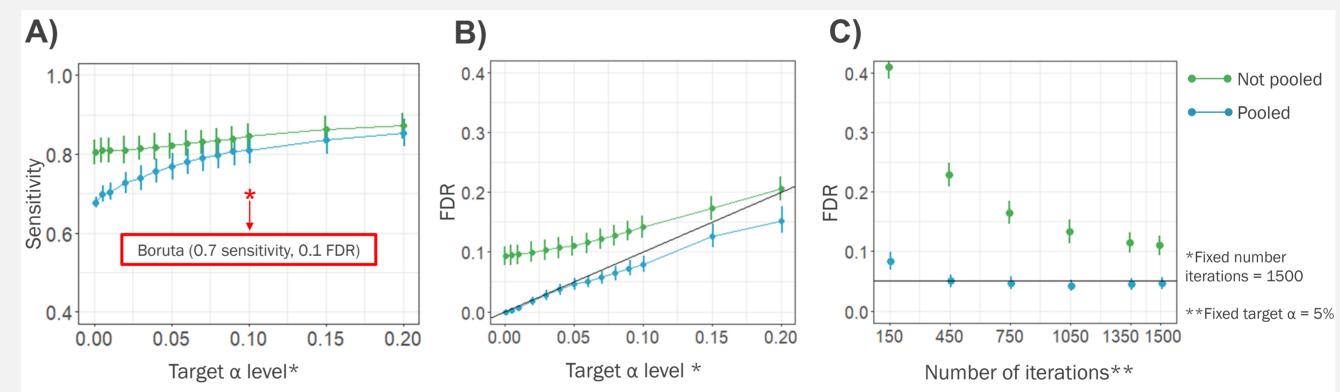
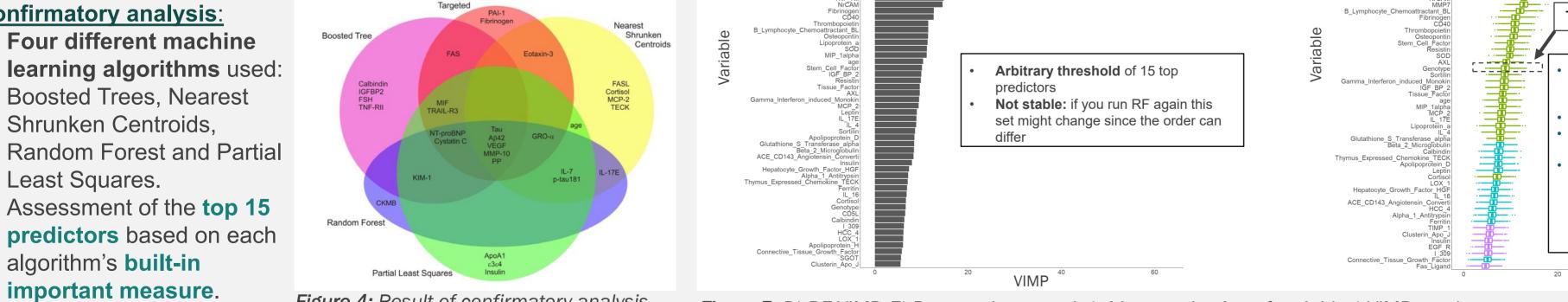


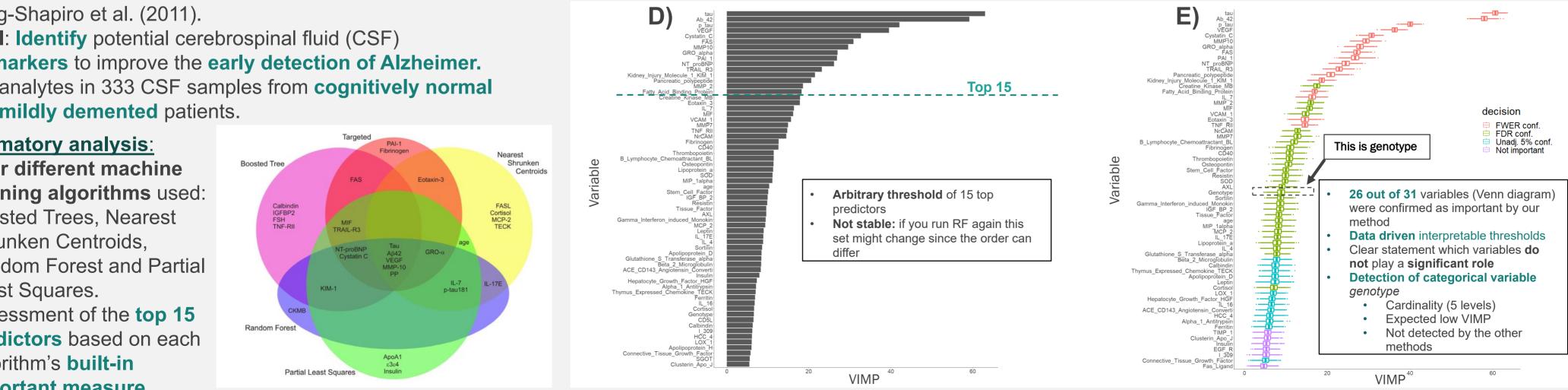
Figure 3: A) Sensitivity vs. target α level. B) Observed FDR vs. target α level. C) Observed FDR vs. number of iterations.

ILLUSTRATION: ALZHEIMER DISEASE STUDY

- Craig-Shapiro et al. (2011).
- Goal: Identify potential cerebrospinal fluid (CSF) biomarkers to improve the early detection of Alzheimer.
- 190 analytes in 333 CSF samples from **cognitively normal** and mildly demented patients.

Confirmatory analysis:





RESULTS WITH PRE-SELECTION AND FALSE DISCOVERY RATE (FDR) ADJUSTMENT:

Benjamini-Hochberg (BH) adjustment method.

Figure 4: Result of confirmatory analysis (from Craig-Shapiro et al. (2011))

Figure 5: D) RF VIMP. E) Proposed approach (with pre-selection of variables) VIMP results.

CONCLUSION

- Main method: "p-values" that can be adjusted and are interpretable.
- Extensions: Pre-selection and pooling improve performance on highdimensional data.
- Bias correction: direct comparison criterion improves handling bias in VIMPs found in literature (Strobl et al. (2007), Nicodemus et al. (2010) and illustration).
- Thresholds: flexible to the user's need.
- Visual guidance: extends the usual RF VIMP plot to 3 levels of significance.

REFERENCES

- Kursa, M. B., Jankowski, A., & Rudnicki, W. R. (2010). Boruta-a system for feature selection. Fundamenta Informaticae, 101(4), 271-285.
- Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 1-21
- Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random forest permutationbased variable importance measures under predictor correlation. BMC bioinformatics, 11, 1-13.
- Degenhardt, F., Seifert, S., & Szymczak, S. (2019). Evaluation of variable selection methods for random forests and omics data sets. Briefings in bioinformatics, 20(2), 492-503.
- Craig-Schapiro, R., Kuhn, M., Xiong, C., Pickering, E. H., & Liu, J. (2011). Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's.