

Evaluation of event rate differences using stratified Kaplan-Meier estimates with Mantel-Haenszel weights & adjusted hybrid variance estimators

BACKGROUND

- Assessment of differences in event rates is a common endeavor in the evaluation of efficacy and safety of new treatments in clinical trials (in particular in oncology).
- We investigate the performance of different hypothesis tests for an overall survival endpoint.
- Stratified analyses are desired and sometimes even required by regulators.
- We illustrate the necessity of non-zero variance estimates – especially in the presence of strong prognostic stratification effects.
- Focus: comparison of event rates via Kaplan-Meier estimates for a pre-specified time t_0
- One-sided test for superiority at significance level α=0.05.

GOALS:

- Choose best stratum weights
- Choose best Kaplan-Meier variance estimator
- Compare performance with **Cox model** (stratified)

SIMULATION STUDY

- 1 experimental arm and 1 control arm
- Per treatment group: 65 subjects divided into 3 strata
- Time of interest: $t_0 = 100$ (e.g., days)
- Survival time and censoring time from exponential distributions
- Constant censoring intensity λ_{cens} =0.005 (leads to 22%-38% of patients censored in scenario 2 below)
- Hazard rates of active treatment group (G=1) and **control group** (G=2) in stratum k: $\lambda_{k,G}$ for G=1,2
- Two underlying models:
 - proportional hazard rates that satisfy the Cox model (COX)

$$\lambda_{k,2}(t) = c_P \lambda_{k,1}(t)$$

for all t and with same hazard ratio $c_P \ge 1$ for all k. • additive survival difference (ASD) at time t_0 :

$$S_{k,2}(t_0) = S_{k,1}(t_0) - c_A$$

for same difference in survival $c_A \ge 0$ for all k. • 10,000 simulation runs

- Simulate proportional effects (hazard ratios):
- $c_P = 2.0, 2.5, 3.0, 3.5$ • Simulate additive effects: $c_A = 0.10, 0.15, 0.20, 0.25$
- 3 different allocations in table below but results only
- illustrated for scenario 2

Scenario	<i>S_{k,1}(t</i> ₀) for k=1,2,3	n per treatment group for k=1,2,3	Note
1	0.80, 0.50, 0.30	20, 30, 15	Base case
2	0.95 , 0.70, 0.50	45 , 10, 10	Largest stratum with greatest $S_{k,1}(t_0)$
3	0.95 , 0.70, 0.50	10 , 10, 45	Smallest stratum with greatest $S_{k,1}(t_0)$

<u>Bischofberger S¹</u>, Buchner H¹, Göldner RG², Bleckert G¹, Zhu L¹, Haller B³ ¹Staburo GmbH, Munich, Germany ²Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany ³Technical University of Munich, School of Medicine, Institute of AI & Informatics in Medicine

Z-TESTS FOR KAPLAN-MEIER RATES

Z-test for 3 strata at time t_0 :

$$Z = \frac{\sum_{k=1}^{3} w_k (\hat{S}_{k,1} - \hat{S}_{k,2})}{\left(\sum_{k=1}^{3} w_k^2 \left(\widehat{\sigma_{k,1}^2} + \widehat{\sigma_{k,2}^2}\right)\right)^{0.5}}$$

- $\hat{S}_{k,G}$: Kaplan-Meier estimator in stratum k and treatment group G=1,2 at time t_0
- $\widehat{\sigma_{k,G}^2}$: variance estimate of $\widehat{S}_{k,G}$, w_k : stratum weights

2 underlying models with 2 different types of tests each:

	Test for ASD (H_0 : $c_A = 0$)	Test for COX (H_0 : $c_P = 1$)	
Simulate: COX $c_P \ge 1$	Z-tests assumptions violated X	Cox regression correct model √	
Simulate: ASD $c_A \ge 0$	Z-tests correct model √	Cox regression assumptions violated X	

• The violation of assumptions for the respective mis-specified stratified tests increases with increasing effect size in the underlying model: The effects c_P and c_A are not the same across all strata if the data are generated from the respective other model.

	c_P per stratum				c_A per stratum		
c _A	stratum 1	stratum 2	stratum 3	C _P	stratum 1	stratum 2	stratum 3
0.10	3.168	1.432	1.322	2.0	0.048	0.210	0.250
0.15	4.350	1.676	1.515	2.5	0.070	0.290	0.323
0.20	5.609	1.943	1.737	3.0	0.093	0.357	0.375
0.25	6.954	2.239	2.000	3.5	0.114	0.413	0.412

Table 1: Proportional hazard ratios c_P in **Table 2:** Additive survival effects c_A in data data from ASD models with actual effect c_A . from COX models with actual effect c_P .

- At least one stratum with Greenwood variance equal to 0 occurred only in <0.01% of all ASD simulation runs with c_A =0.2 and in 0.1% of all COX simulations with c_P =3.0 (in 2.9% of all simulations under H_0). The case with 0 variance in all three strata did not occur in this scenario.
- In scenario 3 (not discussed here), up to 45% of all simulation runs had a stratum with 0 variance under H_0 .

Type I error:

- Cox regression controls type I error as expected.
- Stratified Z-tests with Greenwood variance inflate type I error and are excluded from the analysis of power below (dotted lines in Fig. 1).
- Unstratified Greenwood Z-test controls type I error.

• Z-tests with Borkowf's variance can be too conservative.

Power of test:

- Data from COX model: The Cox regression performs best as expected, the Z-test with MHweights and Borkowf is a reliable alternative.
- Data from ASD model: Z-test with IV-weights and Borkowf performs very well. Cox regression, unstratified Z-test with Greenwood and Z-test with MH-weights and Borkowf have almost identical power.

CONCLUSIONS

- Z-tests for difference in survival at time t_0 are a valuable alternative to Cox regression, especially if the proportionality assumption does not hold. However, for small violations the Cox regression is still the model of choice.
- Greenwood variance can easily become zero in small or extreme strata (Kaplan-Meier = 0 or 1)
- Z-tests with **Borkowf's variance control type I error** stratified Z-test with Greenwood does not
- Mantel-Haenszel type weightings seem promising
- (still assign a weight to strata with 0 variance)

REFERENCES

[1] Borkowf, C.B., 2005. A simple hybrid variance estimator for the Kaplan-Meier survival function. Statist. Med., 24, pp. 827-851.

[2] Lachin, J. M., Biostatistical Methods. The Assessment of Relative Risks, 2nd ed. Wiley-Blackwell, 2011. [3] Greenland, S. and Robins, J.M., 1985. Estimation of a common effect parameter from sparse follow-up data. Biometrics, 41, pp. 55-68.

RESULTS

Type Test Error Cox regression 0.050 Z: unstratified, Greenwood 0.040 Z: IV weight, Greenwood 0.059 Z: MH weight, Greenwood 0.070 Z: unstratified Borkowf 0.026 Z: IV weight, Borkowf 0.025 Z: MH weight, Borkowf 0.041

 Table 3: Type I errors based on
simulations.

